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Coherent control of stimulated emission inside one-dimensional photonic crystals
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In this paper, the quasinormal mof@NM) theory is applied to discuss the quantum problem of an atom
embedded inside a one-dimensiofD) photonic band gapPBG) cavity pumped by two counterpropagating
laser beams. The e.m. field is quantized in terms of the QNMs in the 1D PBG and the atom modeled as a
two-level system is assumed to be weakly coupled to just one of the QNMs. The main result of the paper is that
the decay time depends on the position of the dipole inside the cavity, and can be controlled by the phase
difference of the two laser beams.
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[. INTRODUCTION is a smooth function of frequency over the spectral range of
the atomic transition, the rate of spontaneous and stimulated

coupled to dissipative reservoirs represents a central theme fniSSion ishdescribed by Ferr’;i’s golden rule. Str?n% modi-
many physical contexts. In quantum optics and in in its sim1ication in the DOS can be effected by means of photonic

plest form, the problem consists of a two-level excited atonfYStals. Petret al.[9] have reported on modifications of the
decaying in open space to its ground state through an afMission processes of dye molecules embedded in a three-
lowed electric dipole transition. In this condition the emitted dimensional solid-state photonic crystal exhibiting a stop

radiation propagates away, never coming back to the aton@nd in the visible range. The results are interpreted in terms
propag Y 9 of redistribution of the photon density of states in the photo-

This is a prototype of irreversible decay of a prepared state;. X .
. . ; . ic crystal[10]. In Ref.[11], a general semiclassical treat-
as well as a classical manifestation of the quantization of th ent of radiation rates is developed in an inhomogenous

electromagnetic f'e"ﬂi]- o medium. The results agree with those of a fully quantum
Spontaneous or stimulated emission is a fundamental pri

The behavior of small systenifew degrees of freedom

ting f he i ion b diati alculation, and are applied to a simple scalar model of a
cess resulting from the Interaction between radiation angj,gje in a one-dimensional periodic lattice of the Kronig-

matter. It depends not only on the properties of _the excite enney type. The approach of our paper uses a realistic
atomic system but also on the nature of the environment tghodel for the photonic crystal, as a finite cavity with discon-
which the system is optically couplé@,3]. It is possible to  tinuities in the refractive index, so our approach improves
control the rate of spontaneous or stimulated emission fronthe results of Ref[11], obtained by the Kronig-Penney
an excited atom by altering the density of electromagnetignodel.
modes near the resonant frequency, i.e., by modifying the Using numerical methods, Centiat al. have studied the
accessible modes into which the excited atom can radiate. fropagation of counterpropagating pulses in finite photonic
the modal density in the vicinity of the frequency of interestcrystals in Ref[12]. Linear interference and localization ef-
is less than that of free space, the atomic decay will be refects are shown to combine to either enhance or suppress
tarded, if it is greater it will be accelerat¢d,5]. stimulated emission processes, depending on the initial phase
An important and intriguing situation arose when it wasdifference between the input pulses. These results are inter-
realized that it is possible to create environments in whictpreted by viewing the photonic crystal as an open cavity,
the spectrum of the electromagnetic field exhibits gaps irwith a field-dependent, electromagnetic density of modes
frequency. In other words, no radiation over some extended®OM) sensitive to initial and boundary conditions. The con-
range of frequency can propagate in that environment. Simeept of the DOM has been lacking a precise mathematical
ply stated, an excited atom whose transition frequency fallglefinition for a finite-size structure. With the explosive
in the range of that gap should at first sight never decay. Thgrowth in the fabrication of photonic crystals and nanostruc-
structures exhibiting such frequency gaps are referred to asrres, inherently finite in size, a workable definition becomes
photonic band gapPBG) materials or PBG crystals or even imperative. In Ref[13], D’Aguannoet al. give a definition
photonic crystal$6]. The original idea of light localization is of the DOM based on the Green’s function for a generic
due to Johri7] and independently to Yablonovitd], who  three-dimensional open cavity filled with a linear, isotropic,
was also the first to construct a material exhibiting a gap irdielectric material.
the microwave range. Our paper gives a fully quantum treatment of the dynam-
The photon density of statg®OY9) is the fundamental ics of an atom coupled to two pumps counterpropagating
feature that determines the behavior of the atom-field systenimside a photonic crystal cavity by using quasinormal mode
and characterizes the various types of environments. Th@QNM) formalism, i.e., treating the problem in the frame-
form and analytical properties of the DOS dictate the type ofwork of open systems. A simple definition is introduced for
approximations permissible in formulating the equationsthe density of modes in one-dimensioidD) open cavities,
governing the time evolution of the system. When the DOSgeneralizing the concept of the DOM in free space.
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Il. QUASINORMAL MODES difference of the two counterpropagating pumps is obtained;
The problem of the field description inside an open cavitythe DOMis a S|nu§0|dal funcnon_of that phase difference. .In
has been discussed by several authors. In particular Leung S€c- V. the coupling of an excited atom to one QNM is
al. [14] have introduced the description of the electromag-discussed inside a 1D PBG structure which is pumped by
netic field in a one-side-open and homogeneous cavity ifWO counterpropagating laser beams. The stimulated emis-
terms of quasinormal modes. Because of the leakage, trdon is controlled by the phase difference of the two laser
QNMs are characterized by complex eigenfrequencies an@eams: the emission rate is totally suppressed or strongly
form an orthogonal basis only inside the cavity, according te2nhanced depending on that phase difference. Conclusions
a noncanonical metrics. are given in Sec. VI.
anghenSnm“gr;faéwsgsscaré;veit%ten%Ed tgrggﬂlt;f"st'ge'grﬁ’:?ll. SECOND QUANTIZATION INSIDE AN OPEN CAVITY
. . 9 - ! p - EXCITED BY TWO COUNTERPROPAGATING
dimensional photonic band gdpBG) cavities. The validity PUMPS
of the QNM approach has been discussed by proving the
QNM completeness and reconstructing the behavior of the An open cavity(lengthL), filled with a medium having a
e.m. field in Ref[15]. refractive indexn(x), is excited by two counterpropagating
Ant-Opgﬂgfvmf' viewed as a _‘é'ss'pf‘r:'vebsi’hﬁem’ Catnn]?ir?ﬁumps(phase differencé ), oneE. ”'(x) coming from the
uantize unless one considers the bath as part o . ~ . .
q P ?eft side, the otheEfu )(x) from the right side. We used the

total universe in which energy is conservel’]. Ho et al. N / )
[18] already made an essential first step toward the applicd2€dix @ in order to consider the frequenciyourie) compo-
nent of the field operator considered. The two pumps

tion of QNMs to cavity quantum electrodynamics phenom-; .

ema. Ef:)(x) and Ef:)(x) satisfy some boundary conditions, de-
In Ref.[19], the second quantization scheme based on théined as the incoming wave conditiofk5]

QNM theory has been extended to 1D PBG cavities. The

Feynman propagator is introduced to calculate the decay rate HEL () =iwVpoE, () for x=<0,
of a dipole inside a 1D PBG, related to the DOM, in the o
presence of vacuum fluctuations outside the cavity. axfzflj)(x) =- iw\s"polAEfj)(x) forx=1L, (3.1

In Ref.[20], the second QNM quantization is applied to ) : o
open cavities, but excited by two counterpropagating pumpsherepo=(no/c)? andny is the outside refractive index. Ow-
The QNM Hamiltonian is expressed in terms of the QNMiNg to the theorem of equivalence for the e.m. souf@ds,
operators of annihilation and creation, which describethe two real pumps in the universe can be substituted by two
respectively, the lowering from the QNMth to the QNM fictitious electrical currents on the surfaces of the cavity,
(n=1)th and the raising from the QNMth to the QNM - _ . -V
(n+1)th. The QNM commutation relation is not canonical, Jolw) = = 2po 4EL (Wlxe0 = = 2powE,(0),
and it depends on the geometry of the cavity and the phase . - . .
difference of the two pumps. I (@) = 2Vpg AES(X) |y = = 2ipowES(L).  (3.2)

In this paper, we apply the quasinormal mode theory to
discuss the quantum problem of an atom embedded inside a A. Canonical quantization for the two counterpropagating
one-dimensional photonic band gap cavity, which is pumped pumps
by two counterpropagating laser beams. The e.m. field is

guantized in terms of the QNMs in the 1D PBG and the atonl In the free space, the two counterpropagating pumps are
is modeled as a two-level system. In the electric dipole ap-uned at the frequency and prepared in the quantum state

proximation, the atom is assumed to be weakly coupled t$¢°>:|l/’(t:.o)>' .T.he initifal statel o) coincidg§ With a co?er-
just one of the QNMs. As a result of the paper, the deca nt state, i.e., it is an eigenket of the annihilation operajor
time depends on the position of the dipole inside the cavity,or the normal modes of the univers&7]. The expectation

g w . A . AT
and can be controlled by the phase difference of the two Ias&éjalues of the annihilatioa, and creatiora,, operators must
t

beams. Such a system is relevant for a single-atom, phas e calculated in the coherent staty). As a consequence,

sensitive, optical memory device on the atomic scale. e expectation values of the phgton number and Hamil-
The paper is organized as follows. In Sec. Ill, some nectonian operators are, respectivetiy,)=(ylala,|¢o) and
essary results of Ref20] are stated: the correlation func- <|:|w>:ﬁw<|§|w>, where#i=h/(2m), h being Planck’s constant.
tions of the two counterpropagating laser beams are calcu- | et ys to adopt the Heisenberg representation in the Fou-
lated by simply applying the canonical quantization in termssier domain. The quantum variances of the two fictitious cur-

of the universe modeisl7]; and the autocorrelation function rents(3.2) on the coherent state) are operatively defined
of the e.m. field inside the open cavity can be obtained ding

rectly by extending the second QNM quantization of Refs.

[18,19. In Sec. IV, the operative definition for the density of (33((1))30(0))) = <¢0|3$(w)30(w)|1,00>,
the (norma) modes in the universg20] is generalized in
order to define the density of tiguasinormalmodes inside (3l(@)3(0)) = (Wl (0)IL(0) | ¢, (3.3

an open cavity, filled with a medium with an inhomogeneous
refractive index. The link between the DOM and the phasewvhich can be calculated as
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A st \,e‘pro o resented in terms of the QNM operat@gw) in the “(fre-
(Jo(@)dp(w)) = I (0)I (w)) = m(pow) (Ho), (34 quency Heisenberg representatioft8]
o'lo
go being the dielectric constant in vacuum. If the two surface ~ “ N
source current operators are linked to two counterpropagat- E,0)= 2 a,(o)ff(x), (3.6)
ing fields, the quantum cross correlations of these two ficti- =
tious operators, calculated on a coherent state of the incom- 1 ihe operatord, () have to satisfy the proper“g(w)

ing radiation field, show the properties =& ,(-w), which is similar to the expression valids for ca-

<3I(w)jo(w)> — <jg(w)jL(w)>* — <3(T)(w)30(w)>exp(iA<p), nonipal opergtorﬁl@,lﬂ. If the equal-time ca}nonical quan-
tization rule is applied, the QNM commutation relation can
(3.9 be derived in the absence of external pumgdibg or in the
which in a classical view means that the two fields involvedPresence of two counterpropagating pumps: the QNM com-
are perfectly cohereri2d]. mutation relation is not canonical, and it depends on the
geometry of the cavity and the phase difference of the two
B. QNM quantization inside the open cavity pumps.

The cavity is excited by the two pumps in the coherent
o state|¢p). As a consequence, the expectation values of the
that Imlwp) <.0’ n E.A_.{O' *1,%2,..} gnd form an or QNM| operatorsy,(w) can be directly calculated on the same
thogonal pa5|s only inside t'he open caylty accolrdln'g to Com'statewo). Applying the method of Ref{19], the autocorre-
plex metric§ 15]. The e.m. field operatdg,(x), which inthe  |ation function of the e.m. field can be calculated as a super-

Fourier domain satisfies the propefEﬁ(x)zlAE_w(x), is rep-  position of the QNMs

The QNMs are a discrete set of coup[e@],fﬁ(x)] such

o .. o =2 OO NN (x)
F(x,X',0) = (EL(0E, (X)) = (E-,(WE, (X)) = (3}(0)Jo(w)) > >

N=—2 1/ = Apownwn (0n = @) (wy + w)

c o fNON LN (x)

LS LN X)L i
+((@)Ig(w) 2 2

+J (@I () > =

e sy P00 W (@5 = 0) (@ + ©) e /s, 2P0 (@ =~ ©) (0 + @)
S A (B M (OLNCII MY
)Y D (3.7
N== 1/ =—op 4p0wnwn’(wn - w)(wn’ + w)

where in the previous calculation we used the propertye.m. field, inside a cavity of length, is just in one QNM,
I3 (@) =Jo(-w) for the current field operatofg0]. oscillating in an infinitesimal range of frequendw,w
+dw), i.e.,

IV. DENSITY OF MODES
dp(w) = o(w)L dw. (4.2

The quantum state of an e.m. field, excited inside an open o i
cavity, is generally the superposition of infinite eigenstates!f the geometry of the cavity is represented by the interval
which are the quasinormal modes. In this sense, a “density®=(0,L), the (integra) DOM is calculated as the spatial
of “modes” can be introduced as the density of the probabilaverage of the local DOM inside the cavity, i.e.,
ity that the e.m. field, excited inside the cavity, is just in one L
QNM, oscillating in a range of frequency. o(w) = —f d°9(x, w)dx. 4.3

As a first step, a local density of mode¥°(x, ») can be
introduced. The Ioc_:aI_DOM d.eflln-e N t.he probablhiip(x,Q) The universe can be viewed as a cavity of infinite length
that an e.m. field, inside an infinitesimal cavity,x+dx), is L—o. The e.m. field inside the universe is generally the
just in one QNM, os_cillating in an infinitesimal range of . ntinuum of the normal modd4 7]. The density of prob-
frequency(w, w+dw), i.e., ability that the e.m. field excited inside the universe is just in

dp(x, @) = 0199 (x, w)dx ceo. (4.1 the rﬂrmal _mqge tl_med gt the frequenay i.e., f (x)
=1/\27 expliwVpgX), is obtained as
The (integra) density of modesr(w) remains to be defined. _
The(integra) DOM is linked to the probabilitylp(w) that an o9 (%, ) = Vpolf (X [? = Oref(w) = \r’p:/27r. (4.4

0
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The (local) DOM for the universe modes is the ratio be- length L, then, over thg0, 2w, range N+1 QNMs in
tween the autocorrelation function of the e.m. field in theunits ofL can be excitedl15]; so the constar, is obtained
universe and the expectation value of the e.m eng2§y. by the normalization condition
By analogy, let us propose an operative definition of the local 20
DOM ¢(°9(x, w) for the open cavity of relative indem(x), f ref _2N+1

o i o(w)dw = . (4.6)
which is pumped by the two counterpropagating laser beams. 0 L
The local DOM a9 (x, w) is viewed as am?(x)-modulated
transfer function, if the input is the e.m energy of the two
laser beams and the output is the autocorrelation function DOM and phase difference of the two counterpropagating
(3.7) of the e.m. field inside the cavity: laser beams

6a2(X) F(X,X, ) Inside the cavity, if the condition of QNM completeness is
019 (x, ) & K2 00 (4.5  applied[14],

™ (H.,)
INCIIINED) ,
K being a suitable constant of normalization. > . 0 O xx e(0,L), (4.7
If the open cavity is a symmetric quarter-wave 1D PBG A "
with reference frequencw,s, number of periodsN, and the autocorrelation function of the e.m. figlel7) reduces to

F(x,x’,w)=4p0 5 E 2

oy | D (0o o)

n'=—w

32 =20 N0 0) + FNL(L)
(Hy) INCIIMED

= fNO)N (L)expliAe) + FN(L) N (0)exp(—iA
L3 3 O )exf(l 0+ OGO A0, )f#(x’)] ws
N=- /= o= op)(0+ oy)
and the local DOM can be obtained as
Joo =2 NO)N(0) + “(L)fn,<L)
(Ioc) ) U f
(X,0) =K~ p(X)|:n§oon§w (0= o)+ o) NG (%)

=2 NN (L)expliAe) + FNL) Y (0)exp(—iA

L3 3 MO )exim _«p) LM (Oexp-i "°)f§(x>f:,<x>]. wo
N=—% n/=—o w C‘)n)(w"'wn’)

When the e.m. field consists of one QNM=-n [14]), the local DOMO’SOC)(X,LU) can be related to thentegra) DOM (see
Ref.[19]) as

_1 ) (loc) \Po I N/ 2 o (N0 V]2 4 N Nep\T*
an(w)_Jo O @)dx= K~ (o—Reo?r e {|fn(0)| + N2+ PO FNL)]
XexpiAg) + FN(L[FN(0)] exp(-iAg)} (4.10

wherel,, are normalization integraksee Ref[19]).
In the conservative limit, the open cavity is characterized by narrow resonfimges)| <|Re(w,)|, so each normalization
integral isl,~1/L and the total DOM is the superposition of all the DOMs10), i.e.,

%) [

_ NPo [FRO)+ [fR(L)? \Po o ML explidg) + NLINO)] exp- iAg)
olw) = nzz_m onlw) = 4 Lngw (0 - Rewy)?+Im? wn 47TL ngw (0= Rewy)®+ Im* wy,

(4.11)
If the cavity presents a refractive indekx) which satisfies the symmetry propertigd. /2 -x)=n(L/2+Xx), on the surfaces of
the cavity the values of the QNM functions are such thékL)=(-1)"fN(0). If I,~1/L, then|f}(0)[>=|Im w,|/Vpo [19]. The
DOM (4.1]) can thus be settled as
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o(w) =K[o(w) +75(w)cogAg)], (4.12
where
~ - |Im wn|
o1(w) = ol nzz_w (@-Rea)?+ 1Moy’ (4.13
N 1 < ) Im o,
7o(w) = Hngx 1) (w-= Rewn)(:+ Im? w,
(4.14

Equation(4.13 can be interpreted as the DOM due to only
one laser beam; it is a series of infinite QNM Lorentzian

PHYSICAL REVIEW E 71, 066606(2005

. 2N
i iy «
-——2 (-1)"csq —(w- .41
4LAW§O( ) {A(w wm,o)] (4.16
The number of QNMs over thé®,A) range is N+ 1 in units
of L. The constanK in the DOM (4.12 can be determined
by the condition of normalizatiofé.6), i.e.,

_2N+11

K= , 4.1
s (4.17

where

A
S=S,+Sco4Ag), 31=f 71(w)do,
0

functions and coincides with the DOM due to the vacuum

fluctuations[19]: in fact, the potential number of QNMs in-
side the cavity is independent of the statistics of the pumping

A
Sz=f Ty(w)dw. (4.18
0

because it is fixed only by the geometry of the cavity, which
acts as an e.m. filter of frequency; moreover, the density ofn Fig. 1, the density of mode@gt.12) is plotted, in units of

the probability to excite one QNM.e., the DOM cannot be

the reference DOM4.4), as a function of the dimensionless

modified because the vacuum fluctuations do not add othdrequencyw/ w, for three different quarter-wave symmetric

degrees of freedom in the universe. Equatidri4 can be

1D PBGSs: (@) N\ef=1 um, N=6, n,=2, n,=1.5; (b) s

interpreted as the interference term due to the two counte=1 um, N=6, n,=3 N=2; (C) Aei=1 um, N=7, n,=3 n
propagating laser beams and it is an alternate-sign series oR. In each figure, the DOM is plotted for an external pump-
the same Lorentzian functions. The interference of the twang consisting of one laser beam or the vacuum fluctuations
laser beams produces the control of the DOM inside the ope(dotted ling [see Eqg.(4.15]; two counterpropagating laser
cavity. In fact, the phase difference adds one degree of fredseams in phas&¢=0 (continuous thin ling[see Eq(4.16)];
dom in the universe; so, if the two counterpropagating laseand two laser beams opposite in phase== (continuous
beams are in phasa¢=0, the DOM is a series of even thick line). A quarter-wave symmetric 1D PBG, witk pe-
QNM Lorentzian functions, while if the two laser beams areriods andw,.; as reference frequency, presenk$+2l QNMs
opposite in phasA =, the DOM is a series of odd Lorent- in the [0,2w,;) range., i.e.,k=0,1,...,N excluding
zian functions. This result puts well into evidence how the=2w.;. If the 1D PBG cavity is excited by two counter-
DOM of an open cavity depends on the excitation conditionpropagating laser beams with a phase differengg the

of the cavity.

A quarter-wave symmetric 1D PBG, with periods and
wet s reference frequency, presentdl+2L families of
QNMs [15], i.e.,m=0,1,...,AN: the mth family of QNMs
consists of infinite QNM frequencies wpy,keZ
={0,%1,+2,..}, with the same imaginary part l{@a,.)
=Im(wye) and lined by a stepA=2w.y, i.€., Réwny)
=Rewm o) tkA. The DOM (4.13 can be specified g45]

1 N T
—>> cothl i— (- w,
4LAmE:0 ['A(“’ “’m'o)}

oy(w) =

. 2N
| T
+ MEO COt{K(a} - ‘Um,o)] , (4.15

while the DOM (4.14) converges to

2N =

@)= S (-1

27l m=0 k=-

||m wm,0|
[w- (Rewm,0+ kA)]Z +1m? Wm0

i N T
= mgo (=™ CS{K(ID - wm,o):|

even(odd QONMs, i.e.,k=0,2,..., N (k=1,3,...,N-1),
increase in strength when the two laser beams are in phase,
i.e., Ap=0 (opposite in phase, i.eA¢=1), and almost flag
when the two laser beams are opposite in phase, Ae.,

=1 (in phase, i.e.Ap=0) [see Figs. (@) and 1b)]. If one
period is added to the 1D PBG, the QNMs next to the low
and high frequency band edges exchange their physical re-
sponse to the phase difference of the two laser bdames

Fig. 1(c)]. The density of modes is the physical key to dis-
cussing the coherent control of the stimulated emission.

V. ATOMIC EMISSION POWER

In order to discuss the emission processes of an atom
embedded inside an open cavity excited by two counter-
propagating pumps, let us consider the atom as a two-level
system and the e.m. field in the cavity as a superposition of
guasinormal modes. The dipole approximatid®] is as-
sumed, so the two-level system acts as an electrical dipole of
lengthl, placed in a pointx,, which oscillates orthogonally
to the x direction. At the initial timet=0, the dipole is pre-
pared in the excited state corresponding to the higher energy,

and its momentun® has the mean valugP),—o. The dipole

bandwidth is so narrow, if compared with the QNM spectrum
[18], that the dipole is assumed to beeakly) coupled with
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FIG. 1. The density of modd&q. (4.12)] is plotted, in units of
the reference DOMEG(. (4.4)] as a function of the dimensionless
frequencyw/ w4, for three different quarter-wave symmetric 1D
PBGs: (@) \ef=1 um, N=6, n,=2, nj=1.5; (b) \ef=1 um, N=6,
n,=3, N=2; (¢) \er=1 um, N=7, n,=3, nj=2. In each figure, the
DOM is plotted for an external pumping consisting of one laser
beam or the vacuum fluctuatiodotted ling [see Eq(4.15]; two
counterpropagating laser beams in phase=0 (continuous thin
line) [see Eq.(4.16)]; two laser beams of opposite phase=m
(continuous thick ling
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just one of the QNMs. The cavity is filled with a medium of
refractive indexn(x), the two pumps are in the coherent state
|, and the dipole, coupled with one QNM, is excited with
a local density of probabilitDOM) ¢°(x,w) [see Egs.
(4.5 and(4.9)].

At the timet>0, when the dipole is in the stafe(t))
[17], the e.m. powe(\?\/)t, supplied by the dipole inside the
open cavity[ 22,23, is inversely proportional to the relative
dielectric constanh?(x,) and is directly linked to the local
DOM o9 (x, ), i.e., [13]

/2

m«ﬁxzdl)zwza““)(xo,w).

Wy =— (5.9

If the cavity is homogeneous and extends to the whole uni-
verse, then the refractive indem(xp)=n, and the DOM
Oref(X, @) = 0of(w) =\ po/ 277 become uniform. The time aver-
age for the mean value of the e.m. pow®rl), supplied by
the dipole free in the universe, reduces to

VPo
480”

((Pheg/)?w?.
(5.2

If the two counterpropagating pumps are filtered eat
~Reuw,, just the nth QNM is excited and not the other
QNMs, because thath QNM oscillates at resonance fre-
quency w=~Rew, within the narrow range [En w,|
<|Rewy|, so distant enough from the other QNIM5]. The

e.m. power<\7vn>t supplied by the dipole to theth QNM, i.e.,

— /2 ~
W)= = TS (P2 orer(@) = = %
&0

0

= 72
<Wn>t ==

Sonz(xo)

is proportional to the local density of probabilitpOM) for
the nth QNM [19], i.e.,

(Phed/)20?0 (%0, ), (5.3

L

1% (X0, ) = = o) p(x0) X0 2, (5.4

In
which is directly linked to theintegra) DOM for the nth
QNM, i.e., op(w).

In order to discuss the processes of spontaneous emission,
consider the two pumps in the ground state of the e.m. field
[17]; the DOM for thenth QNM is expressed d4.9]

L 12/lm awy|

M) =Ky— :
on (@) "2 (0w - Rewy)? + Im? w,

(5.5

The normalization constari{,, can be obtained by the fol-
lowing condition:

J‘Re wptIm
R

In order to discuss the processes of stimulated emission, con-
sider the two pumps in the coherent stagg); when the
cavity presents a refractive indexx) which satisfies the
symmetry properties(L/2-x)==n(L/2+x), the DOM for

the nth QNM can be simplified atsee Sec. IY

1
O'EA)(w)dw = L (5.6

e wy—|Im oy
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7B (w) = e P ()[1 + (- 1)" cosAe]. (5.7)

As from Eg. (5.7), the density of probability to excite the
dipole coupled with theith QNM can be controlled by the
phase differencé ¢ of the two external pumps.

A. Dipole-QNM coupling: Decay time in units of dwell time

Let us define thesensitivity function &g, ) of a dipole-
cavity couplingas the ratio between the e.m. powél)

PHYSICAL REVIEW E 71, 066606(2005

) = po 2O
In Oref(®)
[Im |
o-Rewy)?+Im? w,’
(5.12
As discussed in Ref19], for a quarter-wave symmetric 1D

PBG with w,; as reference wavelength amntperiods, the
[0,2w,sf) range includes 8+1 QNMs, which are identified

= Ko\ po(LI )| FN(x0) 2 (

supplied by a dipole located inside an open cavity and th&s [n), ne[0,N]. If the dipole is located in the centeg
e.m. power(5.2) supplied by the same dipole free in the =L/2 of the 1D PBG, it can be coupled to one of the QNMs

universe:

S(Xo,w é <Avv>t .
<Wref>t

(5.9

Inserting Eqs(5.1) and(5.2) in Eq. (5.9), it results that

o (|OC>(X01 o)/ e )

[n(x0)/ng]?

Sxp, @) = (5.9

If the relative dielectric constant is inhomogeneon$
— (%), the local DOM is modifiedref(w) — 1% (Xy, w);

the sensitivity functiorS(xy, w) can be expressed as the per

cent variation of the local DOM°%(x,, w)/ 07ef(w) in units

with an evenn: in fact, in x,=L/2, the QNM intensity|f}|2
has a maximum for even values ofand is almost null for
odd values oh.

The spontaneous emission process of a dipole localized
on the surface of the cavityg=0 is characterized by a decay
time

1

(A) —0N) =
e K h0=0)

(5.13
AwLA)(xo:O) being the bandwidth of the sensitivity function
§Y(%=0,0) at half height [S”(0,0=Rew,)/2]. After
some algebra, recalling(0)|2=|Im w,|/Vpo, it results that

(% =0) = (5.14

2[lm |

of the per cent variation of the relative dielectric constantlt is clear that no emission OCCLﬂ’ﬁ(jA)(XOZO)HOO] when the

n2(xo)/n(2). The meaning of the sensitivity function follows:
Eqg. (5.9 provides a physical tool to discuss the emission

cavity is closed|Im wp|— 0].
The spontaneous emission process of a dipole embedded

processes of a dipole excited inside a cavity with respect tgn the pointx, of the cavity is characterized by a decay time

the case of the same dipole free in the universe.
If the sensitivity function S,(xg,w) of the dipole-ath
QNM coupling, i.e.,

No ]ZUSOC)(XO,G)) (5.10

( ,w)={
%o n(Xo) Oref(®)

is developed by inserting the local DOM of tmth QNM
(5.4), it follows that [recalling p(x)=(n(x)/c)®> and p,
=(no/c)?]

[FRx)[* ora(w)

lh  Oref(@) .

Sh(X%0, @) = po (5.11

If the dipole inside the cavitypoint x,) is coupled to theith
QNM (resonance frequenay= Rew,), then the sensitivity

function S,(Xg, w) is linked both to the normalized intensity

|fN? of the nth QNM, sampled in the poink,, and to the
DOM g, in the resonance ~Rew,. So the weak coupling

1

2 o

(%) =
Ang)(xo) being the bandwidth of the sensitivity function
S¥(x, @) at the half height ofS™(x,=0,w). After some
algebra, it results that

() (5 72 = }(ﬂ) 7 (%= 0)
[Tn (XO)] \“"E |f#(XO)|2 .

4
If the cavity of lengthL is pumped by vacuum fluctuations
filtered at w=Reuw,, it is possible to introduce the dwell
time [13] of vacuum fluctuations, linked to the DOK&.5):
(L1y)? [Im
27 (w-Rew,)?+Im? w,

(5.16

A (w) 2 LoP(w) =K,

_ Ky (LIp?

T m2lmw

The decay timg5.14) of the dipole coupled with thath

(5.17)

of a dipole to one QNM responds to Fermi's golden ruleQNM, when the dipole is on the surfaeg=0, is different

[17].

from the dwell time(5.17 of vacuum fluctuations atv

In order to discuss the processes of spontaneous emissiefiRe w,,; in fact, if the dipole is on one surface of a quarter-

(case A, let us specify the sensitivity functiofb.11) in

wave symmetric 1D PBG with parameteks.s=1 um, N

terms of the DOM(5.5), when an open cavity is excited by =6, n,=3, n)=2 and it is excited by vacuum fluctuations

vacuum fluctuations:

filtered at one band edgew; pang edgd @rer=0.8249 or

066606-7
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FIG. 2. An excited dipole is embedded inside a quarter-wave symmetric 1D PBG with paramgteisum, N=6, n,=3,n,=2, and it
is pumped by two counterpropagating waves filtered at the low frequency bandogglge cqqd wrer=0.8249(a) or at the high frequency
band-edgev| pandedgd @rer=1.175(b). The decay timer, in units of the decay time;; for spontaneous emission when the dipole is on the
surfacexy=0 of the 1D PBJsee Eq.(5.14)], is plotted as a function of the dimensionless positigiL of the dipole,L being the length
of the cavity. Several cases are shown: the spontaneous enfiss®Eq(5.16)], when the two pumps describe vacuum fluctuatiers—);
and the stimulated emissidsee Eq.(5.20], when the two pumps describe two input laser beams, almost in ghase or of opposite
phase(— ——). (c¢) and(d) are magnifications ofa) and (b), respectively for the decay time in the third and fourth periods of the cavity.

O pand edgd @re=1.175, then the decay time is the normalized intensity of theth QNM is almost null, i.e.,
wrefrb";nd edgj((_,xo:O)s33.30 and the ratio between the decay|f§(xo)|250, all the emission processes are inhibited, i.e.,
time and the dwell time iSTE)Aa)nd ed gx(,:O)léthAa)nd edae SﬁA)(Xo,w):Sf_lB)(Xo,w)EO. Otherwise, if the dipole is in a
=1571. ’ ’ point xq of the cavity in which thenth QNM intensity is not

In order to discuss the processes of stimulated emissioRull, i-€., [f\(xp)|*# 0, it can be coupled to one of the QNMs
(case B, let us specify the sensitivity functiof6.11) in ~ Wwith an evenn, when the two laser beams are in phase
terms of the DOM5.7), when a symmetric cavitjrefractive =0, while it can be coupled to one of the QNMs with an odd
indexn(x) such than(L/2-x)=n(L/2+x)] is excited by two N, when the two laser beams are opposite in phage .
Counterpropagating |aser beamase diﬁerencago) The stimulated emission proceSS of a deOle embedded in
the pointx, of the cavity is characterized by a decay time
[fa(x0)* o1 ()
(X0, 0) = pg -

| 1
N n O'ref(w) 7_515)()(0) — & , (5.19
_ 000 o (@)1 +(- 1" cosag] A0P %)
=Po
I Orei(w)
A " o Awf)(xo) being the bandwidth of the sensitivity function
= §M(x0.0)[1 + (- 1)" cosAg]. (5.18

SP(x,w) at the half height ofS™(x,=0,w). After some
If the dipole is embedded in a poigrg of the cavity in which ~ algebra, it results that
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7{1A)(Xo)
V1+(-1)"cosAg

78 (xo) = (5.20

All the bandwidthsAw™(x,=0), Aw™(xo), and Aw'®(xo)
are referred to the half length iA)(XO:O,w), so the decay
times(5.14), (5.16, and(5.20 run from the same instant; the

decay time of the dipole depends on the position of the di-
pole inside the cavity, and can be controlled by the phase

difference of the two laser beams.

Figure 2 refers to an excited dipole, embedded inside a

quarter-wave symmetric 1D PBG with parametexs;
=1 um,N=6, n,=3,n=2, pumped by two counterpropagat-

ing waves filtered at the low frequency band edge (a)

@) pand edgd Wrer=0.8249[Fig. 2a)] or at the high frequency
band edgewy pand edgd @rer=1.175 [Fig. 2b)]. The decay
time 7, in units of the decay time;.; for spontaneous emis-
sion when the dipole is on the surfaxg=0 of the 1D PBG
[see Eq(5.14)], is plotted as a function of the dimensionless
positionxy/L of the dipole,L being the length of the cavity.
Several cases are shown: the spontaneous emigstenEq.

(5.16)], when the two pumps describe vacuum fluctuations

(solid line); and the stimulated emissidsee Eq.(5.20],

when the two pumps describe two input laser beams, almos';

in phase(dashed ling or opposite in phasélong-dashed
short-dashed line So, in the low frequencghigh frequency

band edge, all the emission processes are enhanced if th

dipole is inside the layers with higtiow) refractive index;

while the stimulated emission can be inhibited by increasing

PHYSICAL REVIEW E 71, 066606(2005

15
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101
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2.0

10
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0 3.14 6.28

(b)

A9

(reducing the phase difference of the two laser beams if the  rig 3. The excited dipole, embedded inside the quarter-wave

dipole is inside the layers with loghigh) refractive index. In
fact, next to the low frequencghigh frequency band edge,

symmetric 1D PBG of Fig. 2, is pumped by two counterpropagating
laser beams filtered at the low frequency band e@yeor at the

the DOM is minimum if the two laser beams are opposite inhigh frequency band edg®). The decay time for stimulated emis-

phase(in phasé [see Fig. 1b)]. Figure Zc) [Fig. 2d)] is a
magnification of Fig. £a) [Fig. 2(b)] for the decay time

sion (—), in units of the decay time for spontaneous emission
[see Eq(5.20], is compared with the dwell timg- — 5 for the two

when the dipole is in the third and fourth periods of the 1Dlaser beams, in units of the dwell time for vacuum fluctuatises
PBG. If the dipole is centered in the cavity, the decay time isEq. (5.21)]. The decay time for stimulated emission and the dwell

acceleratedtends to be highly retardgéh the low frequency
(high frequencyband edge. In fact, in the center of the cav-
ity, the QNM corresponding to the low frequengyigh fre-
guency band edge is maximurftends to zerp[see com-
ments on Eq(5.12].

If the cavity of lengthL is pumped by the two laser beams
tuned at the frequency = Re w, (phase differencd¢), it is
possible to introduce the dwell time 3] of the two laser
beams, linked to the DONB.7) [see Eq.(5.17)]

Y £ Loy = LofM[1+ (- 1)" cosAe]
= 8tW[1 +(- 1" cosAe]. (5.21)

The decay timd5.20 for stimulated emission of the dipole,
coupled with thenth QNM, and the dwell timd5.21) of the
two laser beams, tuned at thi#h transmission resonance, are

dual functions; in fact, the stimulated emission is inhibited

time for the two laser beams are compared on different scales as
functions of the phase difference between the two laser beams.

quarter-wave symmetric 1D PBG of Fig. 2, pumped by two
counterpropagating laser beams filtered at the[leig. 3a)]

or at the high frequency band edfeig. 3(b)]. The decay
time for stimulated emissiofsolid line), in units of the de-
cay time for spontaneous emissigee Eq.(5.20], is com-
pared with the dwell timgdashed ling for the two laser
beams, in units of the dwell time for vacuum fluctuations
[see Eq(5.21)]. The decay time for stimulated emission and
the dwell time for the two laser beams are compared on
different scales as functions of the phase difference between
the two laser beams. In the low frequen@ygh frequency
band edge, the decay time ratio is risifgilopes dowiand

so the dwell time ratio slopes dowfis rising when the
phase difference of the two laser beams increases fxgm

0 to 7; in fact, the decay tim¢see Figs. @) and 2b)]

(B)
[7 (%) — ] when the two laser beams are reflected by thgengs to the maximum and the DOldee Fig. 1b)] tends to

B) . .
o (Xo) is minimum]

when the two laser beams “stand” in the cavigt'® is
maximun.

cavity (&;BEO), and it is enhance@r(

the minimum when the laser beams are opposite in phase.
Then, in the low frequencthigh frequency band edge, the
decay time ratio tends to infinity and so the dwell time ratio

Figure 3 refers to the excited dipole embedded inside thés null when the phase difference of the two laser beams is

066606-9
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Ap=7 (Ap=0); in fact, the dipole is not coupled to the for the conservative cases, is not Hermitian and the e.m.

QNM corresponding to the low frequendkiigh frequency
band edge when the two laser beams (apposite in phage
in phase/see comments on E¢.18].

VI. CONCLUSIONS

modes of the e.m. field are not normal but quasinormal. The
importance of the QNM theory lies in the fact that it is pos-
sible to recover the orthogonal representation of the e.m.
field, as is necessary to consider quantum processes.

We have applied the quasinormal mode theory to discuss
the quantum problem of an atom embedded in a one-
dimensional photonic band gap cavity, when it is pumped by

In this paper, we have considered 1D PBG cavities, whichwo counterpropagating laser beams. The e.m. field is quan-
present both sides open to the external environment, with @ized in terms of the QNMs in the 1D PBG and the atom is
stratified material inside. A 1D PBG is finite in space and,modeled as a two-level system. In the electric dipole ap-
working with electromagnetic pulses of a spatial extensiorproximation, the atom is assumed to be weakly coupled to
longer than the length of the open cavity, cannot be studiegust one of the QNMs. This paper shows that the decay time
as an infinite cavity: rather the boundary conditions have talepends on the position of the dipole inside the cavity, and
be considered. The e.m. field in these cavities is well deean be controlled by the phase difference of the two laser
scribed by using the QNM theory. The lack of energy con-beams. Such a system might therefore be relevant for a
servation gives complex, instead of real, eigenfrequenciesingle-atom, phase-sensitive, optical memory device on the
The evolution operator, analogous to the Hamilton operatoatomic scale.
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