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In this paper, the quasinormal modesQNMd theory is applied to discuss the quantum problem of an atom
embedded inside a one-dimensionals1Dd photonic band gapsPBGd cavity pumped by two counterpropagating
laser beams. The e.m. field is quantized in terms of the QNMs in the 1D PBG and the atom modeled as a
two-level system is assumed to be weakly coupled to just one of the QNMs. The main result of the paper is that
the decay time depends on the position of the dipole inside the cavity, and can be controlled by the phase
difference of the two laser beams.
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I. INTRODUCTION

The behavior of small systemssfew degrees of freedomd
coupled to dissipative reservoirs represents a central theme in
many physical contexts. In quantum optics and in in its sim-
plest form, the problem consists of a two-level excited atom
decaying in open space to its ground state through an al-
lowed electric dipole transition. In this condition the emitted
radiation propagates away, never coming back to the atom.
This is a prototype of irreversible decay of a prepared state,
as well as a classical manifestation of the quantization of the
electromagnetic fieldf1g.

Spontaneous or stimulated emission is a fundamental pro-
cess resulting from the interaction between radiation and
matter. It depends not only on the properties of the excited
atomic system but also on the nature of the environment to
which the system is optically coupledf2,3g. It is possible to
control the rate of spontaneous or stimulated emission from
an excited atom by altering the density of electromagnetic
modes near the resonant frequency, i.e., by modifying the
accessible modes into which the excited atom can radiate. If
the modal density in the vicinity of the frequency of interest
is less than that of free space, the atomic decay will be re-
tarded, if it is greater it will be acceleratedf4,5g.

An important and intriguing situation arose when it was
realized that it is possible to create environments in which
the spectrum of the electromagnetic field exhibits gaps in
frequency. In other words, no radiation over some extended
range of frequency can propagate in that environment. Sim-
ply stated, an excited atom whose transition frequency falls
in the range of that gap should at first sight never decay. The
structures exhibiting such frequency gaps are referred to as
photonic band gapsPBGd materials or PBG crystals or even
photonic crystalsf6g. The original idea of light localization is
due to Johnf7g and independently to Yablonovitchf8g, who
was also the first to construct a material exhibiting a gap in
the microwave range.

The photon density of statessDOSd is the fundamental
feature that determines the behavior of the atom-field system
and characterizes the various types of environments. The
form and analytical properties of the DOS dictate the type of
approximations permissible in formulating the equations
governing the time evolution of the system. When the DOS

is a smooth function of frequency over the spectral range of
the atomic transition, the rate of spontaneous and stimulated
emission is described by Fermi’s golden rule. Strong modi-
fication in the DOS can be effected by means of photonic
crystals. Petroet al. f9g have reported on modifications of the
emission processes of dye molecules embedded in a three-
dimensional solid-state photonic crystal exhibiting a stop
band in the visible range. The results are interpreted in terms
of redistribution of the photon density of states in the photo-
nic crystal f10g. In Ref. f11g, a general semiclassical treat-
ment of radiation rates is developed in an inhomogenous
medium. The results agree with those of a fully quantum
calculation, and are applied to a simple scalar model of a
dipole in a one-dimensional periodic lattice of the Kronig-
Penney type. The approach of our paper uses a realistic
model for the photonic crystal, as a finite cavity with discon-
tinuities in the refractive index, so our approach improves
the results of Ref.f11g, obtained by the Kronig-Penney
model.

Using numerical methods, Centiniet al. have studied the
propagation of counterpropagating pulses in finite photonic
crystals in Ref.f12g. Linear interference and localization ef-
fects are shown to combine to either enhance or suppress
stimulated emission processes, depending on the initial phase
difference between the input pulses. These results are inter-
preted by viewing the photonic crystal as an open cavity,
with a field-dependent, electromagnetic density of modes
sDOMd sensitive to initial and boundary conditions. The con-
cept of the DOM has been lacking a precise mathematical
definition for a finite-size structure. With the explosive
growth in the fabrication of photonic crystals and nanostruc-
tures, inherently finite in size, a workable definition becomes
imperative. In Ref.f13g, D’Aguannoet al. give a definition
of the DOM based on the Green’s function for a generic
three-dimensional open cavity filled with a linear, isotropic,
dielectric material.

Our paper gives a fully quantum treatment of the dynam-
ics of an atom coupled to two pumps counterpropagating
inside a photonic crystal cavity by using quasinormal mode
sQNMd formalism, i.e., treating the problem in the frame-
work of open systems. A simple definition is introduced for
the density of modes in one-dimensionals1Dd open cavities,
generalizing the concept of the DOM in free space.
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II. QUASINORMAL MODES

The problem of the field description inside an open cavity
has been discussed by several authors. In particular Leunget
al. f14g have introduced the description of the electromag-
netic field in a one-side-open and homogeneous cavity in
terms of quasinormal modes. Because of the leakage, the
QNMs are characterized by complex eigenfrequencies and
form an orthogonal basis only inside the cavity, according to
a noncanonical metrics.

The QNM treatment can be extended to double-side-open
and nonhomogeneous cavities, in particular to one-
dimensional photonic band gapsPBGd cavities. The validity
of the QNM approach has been discussed by proving the
QNM completeness and reconstructing the behavior of the
e.m. field in Ref.f15g.

An open cavity, viewed as a dissipative system, cannot be
quantizedf16g unless one considers the bath as part of the
total universe in which energy is conservedf17g. Ho et al.
f18g already made an essential first step toward the applica-
tion of QNMs to cavity quantum electrodynamics phenom-
ema.

In Ref. f19g, the second quantization scheme based on the
QNM theory has been extended to 1D PBG cavities. The
Feynman propagator is introduced to calculate the decay rate
of a dipole inside a 1D PBG, related to the DOM, in the
presence of vacuum fluctuations outside the cavity.

In Ref. f20g, the second QNM quantization is applied to
open cavities, but excited by two counterpropagating pumps.
The QNM Hamiltonian is expressed in terms of the QNM
operators of annihilation and creation, which describe,
respectively, the lowering from the QNMnth to the QNM
sn−1dth and the raising from the QNMnth to the QNM
sn+1dth. The QNM commutation relation is not canonical,
and it depends on the geometry of the cavity and the phase
difference of the two pumps.

In this paper, we apply the quasinormal mode theory to
discuss the quantum problem of an atom embedded inside a
one-dimensional photonic band gap cavity, which is pumped
by two counterpropagating laser beams. The e.m. field is
quantized in terms of the QNMs in the 1D PBG and the atom
is modeled as a two-level system. In the electric dipole ap-
proximation, the atom is assumed to be weakly coupled to
just one of the QNMs. As a result of the paper, the decay
time depends on the position of the dipole inside the cavity,
and can be controlled by the phase difference of the two laser
beams. Such a system is relevant for a single-atom, phase-
sensitive, optical memory device on the atomic scale.

The paper is organized as follows. In Sec. III, some nec-
essary results of Ref.f20g are stated: the correlation func-
tions of the two counterpropagating laser beams are calcu-
lated by simply applying the canonical quantization in terms
of the universe modesf17g; and the autocorrelation function
of the e.m. field inside the open cavity can be obtained di-
rectly by extending the second QNM quantization of Refs.
f18,19g. In Sec. IV, the operative definition for the density of
the snormald modes in the universef20g is generalized in
order to define the density of thesquasinormald modes inside
an open cavity, filled with a medium with an inhomogeneous
refractive index. The link between the DOM and the phase

difference of the two counterpropagating pumps is obtained;
the DOM is a sinusoidal function of that phase difference. In
Sec. V, the coupling of an excited atom to one QNM is
discussed inside a 1D PBG structure which is pumped by
two counterpropagating laser beams. The stimulated emis-
sion is controlled by the phase difference of the two laser
beams: the emission rate is totally suppressed or strongly
enhanced depending on that phase difference. Conclusions
are given in Sec. VI.

III. SECOND QUANTIZATION INSIDE AN OPEN CAVITY
EXCITED BY TWO COUNTERPROPAGATING

PUMPS

An open cavityslengthLd, filled with a medium having a
refractive indexnsxd, is excited by two counterpropagating

pumpssphase differenceDwd, oneÊv
s→dsxd coming from the

left side, the otherÊv
s←dsxd from the right side. We used the

pedix v in order to consider the frequencysFourierd compo-
nent of the field operator considered. The two pumps

Êv
s→dsxd and Êv

s←dsxd satisfy some boundary conditions, de-
fined as the incoming wave conditionsf15g

]xÊv
s→dsxd = ivÎr0Êv

s→dsxd for x ø 0,

]xÊv
s←dsxd = − ivÎr0Êv

s←dsxd for x ù L, s3.1d

wherer0=sn0/cd2 andn0 is the outside refractive index. Ow-
ing to the theorem of equivalence for the e.m. sourcesf21g,
the two real pumps in the universe can be substituted by two
fictitious electrical currents on the surfaces of the cavity,

Ĵ0svd = − 2Îr0u]xÊv
s→dsxdux=0 = − 2ir0vÊv

s→ds0d,

ĴLsvd = 2Îr0u]xÊv
s←dsxdux=L = − 2ir0vÊv

s←dsLd. s3.2d

A. Canonical quantization for the two counterpropagating
pumps

In the free space, the two counterpropagating pumps are
tuned at the frequencyv and prepared in the quantum state
uc0l= ucst=0dl. The initial stateuc0l coincides with a coher-
ent state, i.e., it is an eigenket of the annihilation operatorâv

for the normal modes of the universef17g. The expectation
values of the annihilationâv and creationâv

† operators must
be calculated in the coherent stateuc0l. As a consequence,
the expectation values of the photon number and Hamil-

tonian operators are, respectively,kN̂vl=kc0uâv
† âvuc0l and

kĤvl="vkN̂vl, where"=h/ s2pd, h being Planck’s constant.
Let us to adopt the Heisenberg representation in the Fou-

rier domain. The quantum variances of the two fictitious cur-
rentss3.2d on the coherent stateuc0l are operatively defined
as

kĴ0
†svdĴ0svdl = kc0uĴ0

†svdĴ0svduc0l,

kĴL
†svdĴLsvdl = kc0uĴL

†svdĴLsvduc0l, s3.3d

which can be calculated as
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kĴ0
†svdĴ0svdl = kĴL

†svdĴLsvdl =
Îr0

«0n0
2sr0vd2kĤvl, s3.4d

«0 being the dielectric constant in vacuum. If the two surface
source current operators are linked to two counterpropagat-
ing fields, the quantum cross correlations of these two ficti-
tious operators, calculated on a coherent state of the incom-
ing radiation field, show the properties

kĴL
†svdĴ0svdl = kĴ0

†svdĴLsvdl* = kĴ0
†svdĴ0svdlexpsiDwd,

s3.5d

which in a classical view means that the two fields involved
are perfectly coherentf21g.

B. QNM quantization inside the open cavity

The QNMs are a discrete set of couplesfvn, fn
Nsxdg such

that Imsvnd,0, nPZ=h0, ±1, ±2, . . .j and form an or-
thogonal basis only inside the open cavity according to com-

plex metricsf15g. The e.m. field operatorÊvsxd, which in the

Fourier domain satisfies the propertyÊv
†sxd=Ê−vsxd, is rep-

resented in terms of the QNM operatorsânsvd in the “sfre-
quencyd Heisenberg representation”f18g

Êvsxd = o
n=−`

`

ânsvdfn
Nsxd, s3.6d

and the operatorsânsvd have to satisfy the propertyân
†svd

= â−ns−vd, which is similar to the expression valids for ca-
nonical operatorsf16,17g. If the equal-time canonical quan-
tization rule is applied, the QNM commutation relation can
be derived in the absence of external pumpingf19g or in the
presence of two counterpropagating pumps: the QNM com-
mutation relation is not canonical, and it depends on the
geometry of the cavity and the phase difference of the two
pumps.

The cavity is excited by the two pumps in the coherent
state uc0l. As a consequence, the expectation values of the
QNM operatorsânsvd can be directly calculated on the same
stateuc0l. Applying the method of Ref.f19g, the autocorre-
lation function of the e.m. field can be calculated as a super-
position of the QNMs

Fsx,x8,vd = kÊv
†sxdÊvsx8dl = kÊ−vsxdÊvsx8dl = kĴ0

†svdĴ0svdl o
n=−`

`

o
n8=−`

` fn
Ns0dfn8

N s0dfn
Nsxdfn8

N sx8d

4r0vnvn8svn − vdsvn8 + vd

+ kĴL
†svdĴLsvdl o

n=−`

`

o
n8=−`

` fn
NsLdfn8

N sLdfn
Nsxdfn8

N sx8d

4r0vnvn8svn − vdsvn8 + vd
+ kĴL

†svdĴ0svdl o
n=−`

`

o
n8=−`

` fn
Ns0dfn8

N sLdfn
Nsxdfn8

N sx8d

4r0vnvn8svn − vdsvn8 + vd

+ kĴ0
†svdĴLsvdl o

n=−`

`

o
n8=−`

` fn
NsLdfn8

N s0dfn
Nsxdfn8

N sx8d

4r0vnvn8svn − vdsvn8 + vd
, s3.7d

where in the previous calculation we used the property

Ĵ0/L
† svd= Ĵ0/Ls−vd for the current field operatorsf20g.

IV. DENSITY OF MODES

The quantum state of an e.m. field, excited inside an open
cavity, is generally the superposition of infinite eigenstates,
which are the quasinormal modes. In this sense, a “density”
of “modes” can be introduced as the density of the probabil-
ity that the e.m. field, excited inside the cavity, is just in one
QNM, oscillating in a range of frequency.

As a first step, a local density of modessslocdsx,vd can be
introduced. The local DOM defines the probabilityd2psx,vd
that an e.m. field, inside an infinitesimal cavitysx,x+dxd, is
just in one QNM, oscillating in an infinitesimal range of
frequencysv ,v+dvd, i.e.,

d2psx,vd = sslocdsx,vddx dv. s4.1d

The sintegrald density of modesssvd remains to be defined.
Thesintegrald DOM is linked to the probabilitydpsvd that an

e.m. field, inside a cavity of lengthL, is just in one QNM,
oscillating in an infinitesimal range of frequencysv ,v
+dvd, i.e.,

dpsvd = ssvdL dv. s4.2d

If the geometry of the cavity is represented by the interval
C=s0,Ld, the sintegrald DOM is calculated as the spatial
average of the local DOM inside the cavity, i.e.,

ssvd =
1

L
E

0

L

sslocdsx,vddx. s4.3d

The universe can be viewed as a cavity of infinite length
L→`. The e.m. field inside the universe is generally the
continuum of the normal modesf17g. The density of prob-
ability that the e.m. field excited inside the universe is just in
the normal mode tuned at the frequencyv, i.e., fvsxd
=1/Î2p expsivÎr0xd, is obtained as

sref
slocdsx,vd = Îr0ufvsxdu2 = srefsvd = Îr0/2p. s4.4d
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The slocald DOM for the universe modes is the ratio be-
tween the autocorrelation function of the e.m. field in the
universe and the expectation value of the e.m energyf20g.
By analogy, let us propose an operative definition of the local
DOM sslocdsx,vd for the open cavity of relative indexnsxd,
which is pumped by the two counterpropagating laser beams.
The local DOMsslocdsx,vd is viewed as ann2sxd-modulated
transfer function, if the input is the e.m energy of the two
laser beams and the output is the autocorrelation function
s3.7d of the e.m. field inside the cavity:

sslocdsx,vd, K
«0n

2sxd
p

Fsx,x,vd

kĤvl
, s4.5d

K being a suitable constant of normalization.
If the open cavity is a symmetric quarter-wave 1D PBG

with reference frequencyvref, number of periodsN, and

length L, then, over thef0,2vrefd range 2N+1 QNMs in
units ofL can be excitedf15g; so the constantKs is obtained
by the normalization condition

E
0

2vref

ssvddv =
2N + 1

L
. s4.6d

DOM and phase difference of the two counterpropagating
laser beams

Inside the cavity, if the condition of QNM completeness is
appliedf14g,

o
n=−`

`
fn
Nsxdfn

Nsx8d
vn

= 0 ∀ x,x8 P s0,Ld, s4.7d

the autocorrelation function of the e.m. fields3.7d reduces to

Fsx,x8,vd =
r0

3/2

4«0n0
2kĤvlF o

n=−`

`

o
n8=−`

` fn
Ns0dfn8

N s0d + fn
NsLdfn8

N sLd

sv − vndsv + vn8d
fn
Nsxdfn8

N sx8d

+ o
n=−`

`

o
n8=−`

` fn
Ns0dfn8

N sLdexpsiDwd + fn
NsLdfn8

N s0dexps− iDwd

sv − vndsv + vn8d
fn
Nsxdfn8

N sx8dG , s4.8d

and the local DOM can be obtained as

sslocdsx,vd = K
Îr0

4p
rsxdF o

n=−`

`

o
n8=−`

` fn
Ns0dfn8

N s0d + fn
NsLdfn8

N sLd

sv − vndsv + vn8d
fn
Nsxdfn8

N sxd

+ o
n=−`

`

o
n8=−`

` fn
Ns0dfn8

N sLdexpsiDwd + fn
NsLdfn8

N s0dexps− iDwd

sv − vndsv + vn8d
fn
Nsxdfn8

N sxdG . s4.9d

When the e.m. field consists of one QNMsn=−n f14gd, the local DOMsn
slocdsx,vd can be related to thesintegrald DOM ssee

Ref. f19gd as

snsvd =
1

L
E

0

L

sn
slocdsx,vddx= K

Îr0

4p

In

sv − Revnd2 + Im2 vn
hufn

Ns0du2 + ufn
NsLdu2 + fn

Ns0dffn
NsLdg*

3expsiDwd + fn
NsLdffn

Ns0dg* exps− iDwdj s4.10d

whereIn are normalization integralsssee Ref.f19gd.
In the conservative limit, the open cavity is characterized by narrow resonancesuImsvndu! uResvndu, so each normalization

integral isIn<1/L and the total DOM is the superposition of all the DOMss4.10d, i.e.,

ssvd > o
n=−`

`

snsvd > K
Îr0

4pL o
n=−`

` ufn
Ns0du2 + ufn

NsLdu2

sv − Revnd2 + Im2 vn
+ K

Îr0

4pL o
n=−`

`
fn
Ns0dffn

NsLdg* expsiDwd + fn
NsLdffn

Ns0dg* exps− iDwd
sv − Revnd2 + Im2 vn

.

s4.11d

If the cavity presents a refractive indexnsxd which satisfies the symmetry propertiesnsL /2−xd=nsL /2+xd, on the surfaces of
the cavity the values of the QNM functions are such thatfn

NsLd=s−1dnfn
Ns0d. If In<1/L, thenufn

Ns0du2>uIm vnu /Îr0 f19g. The
DOM s4.11d can thus be settled as
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ssvd = Kfs̃1svd + s̃2svdcossDwdg, s4.12d

where

s̃1svd =
1

2pL
o

n=−`

` uIm vnu
sv − Revnd2 + Im2 vn

, s4.13d

s̃2svd =
1

2pL
o

n=−`

`

s− 1dn uIm vnu
sv − Revnd2 + Im2 vn

.

s4.14d

Equations4.13d can be interpreted as the DOM due to only
one laser beam; it is a series of infinite QNM Lorentzian
functions and coincides with the DOM due to the vacuum
fluctuationsf19g: in fact, the potential number of QNMs in-
side the cavity is independent of the statistics of the pumping
because it is fixed only by the geometry of the cavity, which
acts as an e.m. filter of frequency; moreover, the density of
the probability to excite one QNMsi.e., the DOMd cannot be
modified because the vacuum fluctuations do not add other
degrees of freedom in the universe. Equations4.14d can be
interpreted as the interference term due to the two counter-
propagating laser beams and it is an alternate-sign series of
the same Lorentzian functions. The interference of the two
laser beams produces the control of the DOM inside the open
cavity. In fact, the phase difference adds one degree of free-
dom in the universe; so, if the two counterpropagating laser
beams are in phaseDw=0, the DOM is a series of even
QNM Lorentzian functions, while if the two laser beams are
opposite in phaseDw=p, the DOM is a series of odd Lorent-
zian functions. This result puts well into evidence how the
DOM of an open cavity depends on the excitation condition
of the cavity.

A quarter-wave symmetric 1D PBG, withN periods and
vref as reference frequency, presents 2N+1 families of
QNMs f15g, i.e., m=0,1, . . . ,2N: the mth family of QNMs
consists of infinite QNM frequencies vm,k,kPZ
=h0, ±1, ±2, . . .j, with the same imaginary part Imsvm,kd
=Imsvm,0d and lined by a stepD=2vref, i.e., Resvm,kd
=Resvm,0d+kD. The DOM s4.13d can be specified asf15g

s̃1svd =
1

4LD
o
m=0

2N

cothFi
p

D
sv − vm,0

* dG
+

i

4LD
o
m=0

2N

cotFp

D
sv − vm,0dG , s4.15d

while the DOM s4.14d converges to

s̃2svd =
1

2pL
o
m=0

2N

o
k=−`

`

s− 1dm+k

3
uIm vm,0u

fv − sRevm,0 + kDdg2 + Im2 vm,0

=
i

4LD
o
m=0

2N

s− 1dm cscFp

D
sv − vm,0dG

−
i

4LD
o
m=0

2N

s− 1dm cscFp

D
sv − vm,0

* dG . s4.16d

The number of QNMs over thef0,Dd range is 2N+1 in units
of L. The constantK in the DOM s4.12d can be determined
by the condition of normalizations4.6d, i.e.,

K =
2N + 1

L

1

S
, s4.17d

where

S= S1 + S2 cossDwd, S1 =E
0

D

s̃1svddv,

S2 =E
0

D

s̃2svddv. s4.18d

In Fig. 1, the density of modess4.12d is plotted, in units of
the reference DOMs4.4d, as a function of the dimensionless
frequencyv /vref, for three different quarter-wave symmetric
1D PBGs: sad lref=1 mm, N=6, nh=2, nl =1.5; sbd lref
=1 mm, N=6, nh=3 nl =2; scd lref=1 mm, N=7, nh=3 nl
=2. In each figure, the DOM is plotted for an external pump-
ing consisting of one laser beam or the vacuum fluctuations
sdotted lined fsee Eq.s4.15dg; two counterpropagating laser
beams in phaseDw=0 scontinuous thin lined fsee Eq.s4.16dg;
and two laser beams opposite in phaseDw=p scontinuous
thick lined. A quarter-wave symmetric 1D PBG, withN pe-
riods andvref as reference frequency, presents 2N+1 QNMs
in the f0,2vrefd range., i.e.,k=0,1, . . . ,2N excluding v
=2vref. If the 1D PBG cavity is excited by two counter-
propagating laser beams with a phase differenceDw, the
evensoddd QNMs, i.e.,k=0,2, . . . ,2N sk=1,3, . . . ,2N−1d,
increase in strength when the two laser beams are in phase,
i.e., Dw=0 sopposite in phase, i.e.,Dw=pd, and almost flag
when the two laser beams are opposite in phase, i.e.,Dw
=p sin phase, i.e.,Dw=0d fsee Figs. 1sad and 1sbdg. If one
period is added to the 1D PBG, the QNMs next to the low
and high frequency band edges exchange their physical re-
sponse to the phase difference of the two laser beamsfsee
Fig. 1scdg. The density of modes is the physical key to dis-
cussing the coherent control of the stimulated emission.

V. ATOMIC EMISSION POWER

In order to discuss the emission processes of an atom
embedded inside an open cavity excited by two counter-
propagating pumps, let us consider the atom as a two-level
system and the e.m. field in the cavity as a superposition of
quasinormal modes. The dipole approximationf16g is as-
sumed, so the two-level system acts as an electrical dipole of
length l, placed in a point,x0, which oscillates orthogonally
to thex direction. At the initial timet=0, the dipole is pre-
pared in the excited state corresponding to the higher energy,

and its momentumP̂ has the mean valuekP̂lt=0. The dipole
bandwidth is so narrow, if compared with the QNM spectrum
f18g, that the dipole is assumed to besweaklyd coupled with
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just one of the QNMs. The cavity is filled with a medium of
refractive indexnsxd, the two pumps are in the coherent state
uc0l, and the dipole, coupled with one QNM, is excited with
a local density of probabilitysDOMd sslocdsx,vd fsee Eqs.
s4.5d and s4.6dg.

At the time t.0, when the dipole is in the stateucstdl
f17g, the e.m. powerkŴlt, supplied by the dipole inside the
open cavityf22,23g, is inversely proportional to the relative
dielectric constantn2sx0d and is directly linked to the local
DOM sslocdsx,vd, i.e., f13g

kŴlt = −
p/2

«0n
2sx0d

skP̂lt=0/ld2v2sslocdsx0,vd. s5.1d

If the cavity is homogeneous and extends to the whole uni-
verse, then the refractive indexnsx0d=n0 and the DOM
srefsx,vd=srefsvd=Îr0/2p become uniform. The time aver-
age for the mean value of the e.m. powers5.1d, supplied by
the dipole free in the universe, reduces to

kŴlt = −
p/2

«0n0
2skP̂lt=0/ld2v2srefsvd = −

Îr0

4«0n0
2skP̂lt=0/ld2v2.

s5.2d

If the two counterpropagating pumps are filtered atv
<Revn, just the nth QNM is excited and not the other
QNMs, because thenth QNM oscillates at resonance fre-
quency v<Revn within the narrow range 2uIm vnu
! uRevnu, so distant enough from the other QNMsf15g. The

e.m. powerkŴnlt supplied by the dipole to thenth QNM, i.e.,

kŴnlt = −
p/2

«0n
2sx0d

skP̂lt=0/ld2v2sn
slocdsx0,vd, s5.3d

is proportional to the local density of probabilitysDOMd for
the nth QNM f19g, i.e.,

sn
slocdsx0,vd =

1

In
snsvdrsx0dufn

Nsx0du2, s5.4d

which is directly linked to thesintegrald DOM for the nth
QNM, i.e., snsvd.

In order to discuss the processes of spontaneous emission,
consider the two pumps in the ground state of the e.m. field
f17g; the DOM for thenth QNM is expressed asf19g

sn
sAdsvd = Kn

L

2p

In
2uIm vnu

sv − Revnd2 + Im2 vn
. s5.5d

The normalization constantKn can be obtained by the fol-
lowing condition:

E
Re vn−uIm vnu

Re vn+uIm vnu

sn
sAdsvddv =

1

L
. s5.6d

In order to discuss the processes of stimulated emission, con-
sider the two pumps in the coherent stateuc0l; when the
cavity presents a refractive indexnsxd which satisfies the
symmetry propertiesnsL /2−xd= =nsL /2+xd, the DOM for
the nth QNM can be simplified asssee Sec. IVd

FIG. 1. The density of modesfEq. s4.12dg is plotted, in units of
the reference DOMfEq. s4.4dg as a function of the dimensionless
frequencyv /vref, for three different quarter-wave symmetric 1D
PBGs:sad lref=1 mm, N=6, nh=2, nl =1.5; sbd lref=1 mm, N=6,
nh=3, nl =2; scd lref=1 mm, N=7, nh=3, nl =2. In each figure, the
DOM is plotted for an external pumping consisting of one laser
beam or the vacuum fluctuationssdotted lined fsee Eq.s4.15dg; two
counterpropagating laser beams in phaseDw=0 scontinuous thin
lined fsee Eq.s4.16dg; two laser beams of opposite phaseDw=p
scontinuous thick lined.
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sn
sBdsvd = sn

sAdsvdf1 + s− 1dn cosDwg. s5.7d

As from Eq. s5.7d, the density of probability to excite the
dipole coupled with thenth QNM can be controlled by the
phase differenceDw of the two external pumps.

A. Dipole-QNM coupling: Decay time in units of dwell time

Let us define thesensitivity function Ssx0,vd of a dipole-
cavity couplingas the ratio between the e.m. powers5.1d
supplied by a dipole located inside an open cavity and the
e.m. powers5.2d supplied by the same dipole free in the
universe:

Ssx0,vd, kŴlt

kŴreflt

. s5.8d

Inserting Eqs.s5.1d and s5.2d in Eq. s5.8d, it results that

Ssx0,vd =
sslocdsx0,vd/srefsvd

fnsx0d/n0g2 . s5.9d

If the relative dielectric constant is inhomogeneousn0
2

→n2sx0d, the local DOM is modifiedsrefsvd→sslocdsx0,vd;
the sensitivity functionSsx0,vd can be expressed as the per
cent variation of the local DOMsslocdsx0,vd /srefsvd in units
of the per cent variation of the relative dielectric constant
n2sx0d /n0

2. The meaning of the sensitivity function follows:
Eq. s5.9d provides a physical tool to discuss the emission
processes of a dipole excited inside a cavity with respect to
the case of the same dipole free in the universe.

If the sensitivity function Snsx0,vd of the dipole–nth
QNM coupling, i.e.,

Snsx0,vd = F n0

nsx0dG2sn
slocdsx0,vd
srefsvd

, s5.10d

is developed by inserting the local DOM of thenth QNM
s5.4d, it follows that frecalling rsxd=(nsxd /c)2 and r0

=sn0/cd2g

Snsx0,vd = r0
ufn

Nsx0du2

In

snsvd
srefsvd

. s5.11d

If the dipole inside the cavityspoint x0d is coupled to thenth
QNM sresonance frequencyv<Revnd, then the sensitivity
function Snsx0,vd is linked both to the normalized intensity
ufn

Nu2 of the nth QNM, sampled in the pointx0, and to the
DOM sn in the resonancev<Revn. So the weak coupling
of a dipole to one QNM responds to Fermi’s golden rule
f17g.

In order to discuss the processes of spontaneous emission
scase Ad, let us specify the sensitivity functions5.11d in
terms of the DOMs5.5d, when an open cavity is excited by
vacuum fluctuations:

Sn
sAdsx0,vd = r0

ufn
Nsx0du2

In

sn
sAdsvd

srefsvd

= Kn
Îr0sLIndufn

Nsx0du2
uIm vnu

sv − Revnd2 + Im2 vn
.

s5.12d

As discussed in Ref.f19g, for a quarter-wave symmetric 1D
PBG with vref as reference wavelength andN periods, the
f0,2vrefd range includes 2N+1 QNMs, which are identified
as unl, nP f0,Ng. If the dipole is located in the centerx0

=L /2 of the 1D PBG, it can be coupled to one of the QNMs
with an evenn: in fact, in x0=L /2, the QNM intensityufn

Nu2
has a maximum for even values ofn and is almost null for
odd values ofn.

The spontaneous emission process of a dipole localized
on the surface of the cavityx0=0 is characterized by a decay
time

tn
sAdsx0 = 0d =

1

Dvn
sAdsx0 = 0d

, s5.13d

Dvn
sAdsx0=0d being the bandwidth of the sensitivity function

Sn
sAdsx0=0,vd at half height fSn

sAds0,v=Revnd /2g. After
some algebra, recallingufn

Ns0du2= uIm vnu /Îr0, it results that

tn
sAdsx0 = 0d =

1

2uIm vnu
. s5.14d

It is clear that no emission occursftn
sAdsx0=0d→`g when the

cavity is closedfuIm vnu→0g.
The spontaneous emission process of a dipole embedded

in the pointx0 of the cavity is characterized by a decay time

tn
sAdsx0d =

1

Dvn
sAdsx0d

, s5.15d

Dvn
sAdsx0d being the bandwidth of the sensitivity function

Sn
sAdsx0,vd at the half height ofSn

sAdsx0=0,vd. After some
algebra, it results that

ftn
sAdsx0dg2 >

1

4S LIn

Îr0
D tn

sAdsx0 = 0d
ufn

Nsx0du2
. s5.16d

If the cavity of lengthL is pumped by vacuum fluctuations
filtered at v<Revn, it is possible to introduce the dwell
time f13g of vacuum fluctuations, linked to the DOMs5.5d:

dtn
sAdsvd, Lsn

sAdsvd = Kn
sLInd2

2p

uIm vnu
sv − Revnd2 + Im2 vn

>
Kn

p

sLInd2

2uIm vnu
. s5.17d

The decay times5.14d of the dipole coupled with thenth
QNM, when the dipole is on the surfacex0=0, is different
from the dwell time s5.17d of vacuum fluctuations atv
<Revn; in fact, if the dipole is on one surface of a quarter-
wave symmetric 1D PBG with parameterslref=1 mm, N
=6, nh=3, nl =2 and it is excited by vacuum fluctuations
filtered at one band edgevI band edge/vref<0.8249 or
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vII band edge/vref<1.175, then the decay time is
vreftband edge

sAd sx0=0d>33.30 and the ratio between the decay
time and the dwell time istband edge

sAd sx0=0d /dtband edge
sAd

>1.571.
In order to discuss the processes of stimulated emission

scase Bd, let us specify the sensitivity functions5.11d in
terms of the DOMs5.7d, when a symmetric cavityfrefractive
indexnsxd such thatnsL /2−xd=nsL /2+xdg is excited by two
counterpropagating laser beamssphase differenceDwd

Sn
sBdsx0,vd = r0

ufn
Nsx0du2

In

sn
sBdsvd

srefsvd

= r0
ufn

Nsx0du2

In

sn
sAdsvdf1 + s− 1dn cosDwg

srefsvd

= Sn
sAdsx0,vdf1 + s− 1dn cosDwg. s5.18d

If the dipole is embedded in a pointx0 of the cavity in which

the normalized intensity of thenth QNM is almost null, i.e.,
ufn

Nsx0du2>0, all the emission processes are inhibited, i.e.,
Sn

sAdsx0,vd=Sn
sBdsx0,vd>0. Otherwise, if the dipole is in a

point x0 of the cavity in which thenth QNM intensity is not
null, i.e., ufn

Nsx0du2Þ0, it can be coupled to one of the QNMs
with an evenn, when the two laser beams are in phaseDw
=0, while it can be coupled to one of the QNMs with an odd
n, when the two laser beams are opposite in phaseDw=p.

The stimulated emission process of a dipole embedded in
the pointx0 of the cavity is characterized by a decay time

tn
sBdsx0d =

1

Dvn
sBdsx0d

, s5.19d

Dvn
sBdsx0d being the bandwidth of the sensitivity function

Sn
sBdsx0,vd at the half height ofSn

sAdsx0=0,vd. After some
algebra, it results that

FIG. 2. An excited dipole is embedded inside a quarter-wave symmetric 1D PBG with parameterslref=1 mm, N=6, nh=3, nl =2, and it
is pumped by two counterpropagating waves filtered at the low frequency band edgevI band edge/vref<0.8249sad or at the high frequency
band-edgevII bandedge/vref<1.175sbd. The decay timet, in units of the decay timetref for spontaneous emission when the dipole is on the
surfacex0=0 of the 1D PBGfsee Eq.s5.14dg, is plotted as a function of the dimensionless positionx0/L of the dipole,L being the length
of the cavity. Several cases are shown: the spontaneous emissionfsee Eq.s5.16dg, when the two pumps describe vacuum fluctuationss——d;
and the stimulated emissionfsee Eq.s5.20dg, when the two pumps describe two input laser beams, almost in phases– – –d or of opposite
phases— – —d. scd and sdd are magnifications ofsad and sbd, respectively for the decay time in the third and fourth periods of the cavity.
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tn
sBdsx0d >

tn
sAdsx0d

Î1 + s− 1dn cosDw
. s5.20d

All the bandwidthsDvn
sAdsx0=0d, Dvn

sAdsx0d, and Dvn
sBdsx0d

are referred to the half length ofSn
sAdsx0=0,vd, so the decay

timess5.14d, s5.16d, ands5.20d run from the same instant; the
decay time of the dipole depends on the position of the di-
pole inside the cavity, and can be controlled by the phase
difference of the two laser beams.

Figure 2 refers to an excited dipole, embedded inside a
quarter-wave symmetric 1D PBG with parameterslref
=1 mm, N=6, nh=3, nl =2, pumped by two counterpropagat-
ing waves filtered at the low frequency band edge
vI band edge/vref<0.8249fFig. 2sadg or at the high frequency
band edgevII band edge/vref<1.175 fFig. 2sbdg. The decay
time t, in units of the decay timetref for spontaneous emis-
sion when the dipole is on the surfacex0=0 of the 1D PBG
fsee Eq.s5.14dg, is plotted as a function of the dimensionless
positionx0/L of the dipole,L being the length of the cavity.
Several cases are shown: the spontaneous emissionfsee Eq.
s5.16dg, when the two pumps describe vacuum fluctuations
ssolid lined; and the stimulated emissionfsee Eq.s5.20dg,
when the two pumps describe two input laser beams, almost
in phasesdashed lined or opposite in phaseslong-dashed
short-dashed lined. So, in the low frequencyshigh frequencyd
band edge, all the emission processes are enhanced if the
dipole is inside the layers with highslowd refractive index;
while the stimulated emission can be inhibited by increasing
sreducingd the phase difference of the two laser beams if the
dipole is inside the layers with lowshighd refractive index. In
fact, next to the low frequencyshigh frequencyd band edge,
the DOM is minimum if the two laser beams are opposite in
phasesin phased fsee Fig. 1sbdg. Figure 2scd fFig. 2sddg is a
magnification of Fig. 2sad fFig. 2sbdg for the decay time
when the dipole is in the third and fourth periods of the 1D
PBG. If the dipole is centered in the cavity, the decay time is
acceleratedstends to be highly retardedd in the low frequency
shigh frequencyd band edge. In fact, in the center of the cav-
ity, the QNM corresponding to the low frequencyshigh fre-
quencyd band edge is maximumstends to zerod fsee com-
ments on Eq.s5.12dg.

If the cavity of lengthL is pumped by the two laser beams
tuned at the frequencyv<Revn sphase differenceDwd, it is
possible to introduce the dwell timef13g of the two laser
beams, linked to the DOMs5.7d fsee Eq.s5.17dg

dtn
sBd, Lsn

sBd = Lsn
sAdf1 + s− 1dn cosDwg

= dtn
sAdf1 + s− 1dn cosDwg. s5.21d

The decay times5.20d for stimulated emission of the dipole,
coupled with thenth QNM, and the dwell times5.21d of the
two laser beams, tuned at thenth transmission resonance, are
dual functions; in fact, the stimulated emission is inhibited
ftn

sBdsx0d→`g when the two laser beams are reflected by the
cavity sdtn

sBd=0d, and it is enhancedftn
sBdsx0d is minimumg

when the two laser beams “stand” in the cavityfdtn
sBd is

maximumg.
Figure 3 refers to the excited dipole embedded inside the

quarter-wave symmetric 1D PBG of Fig. 2, pumped by two
counterpropagating laser beams filtered at the lowfFig. 3sadg
or at the high frequency band edgefFig. 3sbdg. The decay
time for stimulated emissionssolid lined, in units of the de-
cay time for spontaneous emissionfsee Eq.s5.20dg, is com-
pared with the dwell timesdashed lined for the two laser
beams, in units of the dwell time for vacuum fluctuations
fsee Eq.s5.21dg. The decay time for stimulated emission and
the dwell time for the two laser beams are compared on
different scales as functions of the phase difference between
the two laser beams. In the low frequencyshigh frequencyd
band edge, the decay time ratio is risingsslopes downd and
so the dwell time ratio slopes downsis risingd when the
phase difference of the two laser beams increases fromDw
=0 to p; in fact, the decay timefsee Figs. 2sad and 2sbdg
tends to the maximum and the DOMfsee Fig. 1sbdg tends to
the minimum when the laser beams are opposite in phase.
Then, in the low frequencyshigh frequencyd band edge, the
decay time ratio tends to infinity and so the dwell time ratio
is null when the phase difference of the two laser beams is

FIG. 3. The excited dipole, embedded inside the quarter-wave
symmetric 1D PBG of Fig. 2, is pumped by two counterpropagating
laser beams filtered at the low frequency band edgesad or at the
high frequency band edgesbd. The decay time for stimulated emis-
sion s——d, in units of the decay time for spontaneous emission
fsee Eq.s5.20dg, is compared with the dwell times– – –d for the two
laser beams, in units of the dwell time for vacuum fluctuationsfsee
Eq. s5.21dg. The decay time for stimulated emission and the dwell
time for the two laser beams are compared on different scales as
functions of the phase difference between the two laser beams.
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Dw=p sDw=0d; in fact, the dipole is not coupled to the
QNM corresponding to the low frequencyshigh frequencyd
band edge when the two laser beams aresopposite in phased
in phasefsee comments on Eq.s5.18dg.

VI. CONCLUSIONS

In this paper, we have considered 1D PBG cavities, which
present both sides open to the external environment, with a
stratified material inside. A 1D PBG is finite in space and,
working with electromagnetic pulses of a spatial extension
longer than the length of the open cavity, cannot be studied
as an infinite cavity: rather the boundary conditions have to
be considered. The e.m. field in these cavities is well de-
scribed by using the QNM theory. The lack of energy con-
servation gives complex, instead of real, eigenfrequencies.
The evolution operator, analogous to the Hamilton operator

for the conservative cases, is not Hermitian and the e.m.
modes of the e.m. field are not normal but quasinormal. The
importance of the QNM theory lies in the fact that it is pos-
sible to recover the orthogonal representation of the e.m.
field, as is necessary to consider quantum processes.

We have applied the quasinormal mode theory to discuss
the quantum problem of an atom embedded in a one-
dimensional photonic band gap cavity, when it is pumped by
two counterpropagating laser beams. The e.m. field is quan-
tized in terms of the QNMs in the 1D PBG and the atom is
modeled as a two-level system. In the electric dipole ap-
proximation, the atom is assumed to be weakly coupled to
just one of the QNMs. This paper shows that the decay time
depends on the position of the dipole inside the cavity, and
can be controlled by the phase difference of the two laser
beams. Such a system might therefore be relevant for a
single-atom, phase-sensitive, optical memory device on the
atomic scale.
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